Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner.
نویسندگان
چکیده
Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects.
منابع مشابه
Immune Modulation by Different Types of β2→1-Fructans Is Toll-Like Receptor Dependent
INTRODUCTION β2→1-fructans are dietary fibers. Main objectives of this study were 1) to demonstrate direct signalling of β2→1-fructans on immune cells, 2) to study whether this is mediated by the pattern recognition receptors Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain-containing proteins (NODs), and 3) to relate the observed effects to the chain length differences ...
متن کاملβ2→1-Fructans Modulate the Immune System In Vivo in a Microbiota-Dependent and -Independent Fashion
It has been shown in vitro that only specific dietary fibers contribute to immunity, but studies in vivo are not conclusive. Here, we investigated degree of polymerization (DP) dependent effects of β2→1-fructans on immunity via microbiota-dependent and -independent effects. To this end, conventional or germ-free mice received short- or long-chain β2→1-fructan for 5 days. Immune cell populations...
متن کاملToll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1
We investigated the role of Toll-like receptor (TLR) 2 in maintaining the integrity of the airway epithelial barrier using the human bronchial epithelial cell line Calu-3. Activation of TLR2 by its ligands, Pam3CysSK4 and Peptidoglycan showed a concentration dependent increase in epithelial barrier function, as measured by transepithelial electrical resistance (TEER). This was confirmed by a de...
متن کاملP-33: Expression of Toll-Like Receptor 2-3 Genes in Human Sertoli Cells
Background: Toll-like receptors (TLRs) constitute a major part of innate immunity, which can distinguish pathogen associate molecular pattern. Sertoli cells create a special immunological niche that protects somniferous tubules from auto antigens and pathogens. These cells are the only somatic cells in somniferous that protect testis cells against pathogens. The purpose of this study was to eva...
متن کاملHypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia
Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of nutrition
دوره 144 7 شماره
صفحات -
تاریخ انتشار 2014